The Geography of Life Gabriel M. Ahlfeldt¹ Ismir Mulalic² Caterina Soto Vieira³ Daniel M. Sturm³ ¹Humboldt University ²Copenhagen Business School ³London School of Economics April 12, 2024 **International Workshop** #### Motivation - Large literatures have investigated how age and life events, such as marriage, children or retirement, shape economic decisions: - Franco Modigliani's pioneering work introduced the idea that wages, consumption and savings are intimately linked to age. - Gary Becker's work portrays marriage and children as fundamental determinants of labour supply and time allocation. - These ideas have generated vast empirical literatures that show that age and life events profoundly shape labour supply, wages and savings. - Despite this long tradition we know surprisingly little about how age and life events shape location choices across space. - This is puzzling as housing is one of the largest items of household expenditure and there are large price and amenity differences across different locations. ## This Paper - This paper uses newly assembled individual level panel data for Copenhagen to show how age and life events shape location choices. - Using nearly 40 years of data, we provide stylized facts how location choices are affected by age and life events within the Copenhagen metropolitan area. - We develop a quantitative spatial model to show how these location choices are explained by housing expenditure shares, commuting costs and amenities. - We use model counterfactuals to explore how demographic trends such as aging and fertility shape the spatial organisation of cities. #### Related Literature - Effect of age on wages, income and savings: Modigliani (1966), Mincer (1974), Meghir and Pistaferri (2011) - Effect of marriage and children on labour outcomes and consumption: Becker (1973, 1974), Eckstein and Wolpin (1989), Blundell et al. (1994), Van Der Klaauw (1996), Adda et al. (2017), Kleven et al. (2018) - Quantitative models of cities: Ahlfeldt et al. (2015), Allen et al. (2015), Monte et al. (2018), Heblich et al. (2020), Tsivanidis (2022), Miyauchi et al. (2022) - Age, Fertility and Location Choices: Komissarova (2022), Moreno-Maldonado and Santamaría (2022), Coeurdacier et al. (2023), Albuoy and Faberman (2024) #### Overview of the Presentation - Empirical Context and Data - Stylized Facts on Age and Life Events - Theoretical Model - Quantification - Counterfactuals - Conclusion # **Empirical Setting** # A View from Space # Copenhagen Metro Area #### Data - Our main dataset is an annual population panel of both workers and the non-working population in the Copenhagen metro area starting in 1983. - For each person we observe the following information: - Residence and workplace (if working) location in 100 x 100m grid cells. - Wage and non-wage income and sector of employment (if working). - Size and type of residence including estimates of the square meter price. - Family status, including number and age of children and marital status. - We have the same data also for other parts of Denmark and see when people move away from or into Copenhagen. - We combine this data with detailed information on the geography of Copenhagen including travel times by several different modes. # Stylized Facts: Age # Age(ing) in cities # Parents Versus Non-Parents and Gender Gaps # **Stylized Facts: Life Events** ## **Empirical Strategy Life Events** - We estimate event-study regressions to determine to what extent the patterns across age groups are caused by life events. - We consider the following life events: cohabitation, children, separation, empty nesting, retirement, and death of the spouse (which can all repeat). - For estimation we consider all life events that happen to at least 2.5% of the people in our sample, but here concentrate on the most frequent events. - For efficiency, we run separate regressions for early and late life events (above and below median occurance at age 40). Early life Late life - Empirically, the timing and sequence of life events varies a lot between different individuals. Frequency Early life Frequency Late life # **Regression Specification** We estimate the following event-study regression using the imputation method (Borusyak, Jaravel and Spiess, 2024): $$y_{it} = \alpha_i + \eta_s + \sum_{\substack{e \in \mathbb{E} \\ h \neq -1}} \sum_{\substack{h = -a \\ h \neq -1}}^b \beta_h^e \mathbb{1}[K_{it}^e = h] + \varepsilon_{i,t}$$ - y_{it}: Outcome of worker i in year t - α_i : Individual fixed effects - η_s : Age fixed effects - $K_{it}^e = t E_i^e$ the difference between the current year (t) and the year in which individual i experiences event $e(E_i^e)$, and $\mathbb{I}[K_{it}^e = h]$ is a dummy for difference h. - β_h^e : are the treatment effects of the *a* leads and *b* lags of life event $e \in \mathbb{E}$, where \mathbb{E} can either be the early or late life events. - The regressions contain all leads and lags but the graphs show -10 to +15. #### First Cohabitation Years relative to beginning of first cohabitation Years relative to beginning of first cohabitation Years relative to beginning of first cohabitation #### First Child Years relative to first child being born ### **First Separation** ## Retirement and Death of Spouse # **Theoretical Framework** #### **Model Overview** - We develop a quantitative urban model in the tradition of Ahlfeldt et al. (2015) which differs from the exiting literature in three main ways: - Different types workers (low/high skilled and young/old) - Non-working population (pensioners and students) - Workers can have different family types (married, children etc.), which affect commuting costs, housing expenditure and preferences over amenities. - The model is static and captures the steady-state distribution of different types of agents in space. ### **Model Setup** - The city consists of locations that are connected by a transport technology. - Workers and non-working agents consume a final good and floor space and value residential amenities depending on their family type f and occupation o. - Workers choose where to live and work, while non-workers only do the first. - Firms use labour and floor space as inputs to produce a freely tradable good. - In production, workers are perfectly substitutable across family type, but not across skill and age groups. - Floor space is produced using capital and land and optimally allocated. - For simplicity the city is closed and contains a fixed total population. - All markets are competitive. #### **Preferences and Production** Indirect utility of worker ω living in location n, working in location i, of occupation o and family type f is: $$U_{ni}^{of}(\omega) = \frac{B_{ni}^{of} w_i^o z_{ni}^{of}(\omega)}{\kappa_{ni}^{of}(P_n)^{\alpha^{of}}(Q_n)^{1-\alpha^{of}}} \quad 0 < \alpha^{of} < 1.$$ (1) • Indirect utility function of non-worker ρ of group r living in n is: $$U_n^r(\rho) = \frac{B_n^r \bar{w}^r z_n^r(\rho)}{(P_n)^{\alpha r} (Q_n)^{1-\alpha r}} \quad 0 < \alpha^r < 1$$ (2) • Output (Y_i) in i is produced using all types of labour (L_i^o) and floor space (H_i) : $$Y_{i} = A_{i} \prod_{o \in \mathbb{O}} \left(\frac{L_{i}^{o}}{\beta_{i}^{o}}\right)^{\beta_{i}^{o}} \left(\frac{H_{i}}{\beta^{H}}\right)^{\beta^{H}}, \quad 0 < \beta_{i}^{o}, \beta^{H} < 1, \quad \sum_{o \in \mathbb{O}} \beta_{i}^{o} + \beta^{H} = 1 \quad (3)$$ # Quantification ## **Estimation of Key Model Parameters** - We estimate relative housing expenditure shares (α^{of} and α^{r}) for all combinations of workers and non workers (17 groups). - We estimate gravity commuting equations for all family and worker type combinations (12 groups) using PPML. - We estimate Frechet shape parameters (ϵ^{of} and ϵ^r) for all worker and non-worker types. - We calibrate location specific labour input shares (β_i^o) using the observed composition of employment across locations. - We set the share of floor space in total production costs (β^H) to 0.15. #### The Role of Residential Amenities - The model inversion suggests that a substantial part of the variation in location choices is due to differences in preferences over local amenities. - Singles and childless couples prefer dense areas over more peripheral locations. - Pensioners dislike dense areas in the center of Copenhagen and prefer suburbs. - High-skilled have a stronger preference for dense areas than the low-skilled. # Counterfactuals #### Counterfactuals - We use model counterfactuals to explore how the striking differences in location preferences will reshape cities through demographic change. - We consider three different model counterfactuals: - 1. An increase in the share of the old (40+) population by 10%. - A decrease in the share of families with children until the Total Fertility Rate (TFR) reaches 1. - 3. An increase in the share of single households by 10%. - Today we will focus on the first two counterfactuals. # Aging Counterfactual: Increase in the 40+ Population by 10% # Lower Fertility Counterfactual: Fertility Drops to 1 Child per Women #### Conclusion - This paper provides evidence that age and life events have a substantial effect on the spatial sorting of people across locations within cities. - We use a quantitative spatial model estimate which factors drive the striking sorting of different groups in cities. - We use counterfactuals to show how demographic changes that alter the composition of a cities population affect housing prices and sorting in cities. - The results suggest that demographic changes such as fertility or aging can change the geography of cities substantially. # **Early Life Events** Table: Age Distribution of Early Life Events | Event | p10 | p50 | p90 | Treated Individuals | Share of sample (%) | |---------------------|-----|-----|-----|---------------------|---------------------| | First Child | 23 | 29 | 36 | 660503 | 22.3 | | Second Child | 25 | 31 | 38 | 517545 | 17.5 | | Third Child | 28 | 34 | 41 | 172159 | 5.8 | | First Cohabitation | 21 | 26 | 41 | 870719 | 29.4 | | Second Cohabitation | 25 | 32 | 51 | 498638 | 16.8 | | Third Cohabitation | 28 | 37 | 54 | 145563 | 4.9 | | First Separation | 22 | 31 | 55 | 804221 | 27.2 | | Second Separation | 26 | 36 | 54 | 241615 | 8.2 | ### **Late Life Events** Table: Age Distribution of Late Life Events | Event | p10 | p50 | p90 | Treated Individuals | Share of sample (%) | |----------------------------|-----|-----|-----|---------------------|---------------------| | Empty Nest | 42 | 52 | 62 | 630665 | 21.3 | | Pension | 49 | 62 | 67 | 671887 | 22.7 | | First Widowhood | 52 | 70 | 84 | 201439 | 6.8 | | First Late-Life Separation | 40 | 56 | 77 | 118477 | 4.0 | # Frequency of Early Life Events by Age # Frequency of Late Life Events by Age ### Imputation versus OLS Years relative to beginning of first cohabitation ## First Cohabitation by Gender ## First Child by Gender #### Second Child ## **Empty Nest and Late Life Separation** Years relative to last child leaving home Years relative to last child leaving home # **Model Groups** **Table: Overview of Model Groups** | | Age | Skill | Family type | |-------------|------------------------|-------------|---| | Non-workers | Students
Pensioners | -
LS, HS | Single
Single, Cohabiting | | Workers | • | | Single, Cohabiting, Cohabiting with Children Single, Cohabiting, Cohabiting with Children |